- Visibility 167 Views
- Downloads 170 Downloads
- Permissions
- DOI 10.18231/j.achr.2025.014
-
CrossMark
- Citation
Balancing oxidative stress: Antioxidants as Allies and adversaries in cancer treatment
The medical repercussions of cancer span globally because genetic disposition and environmental elements together with life choices play a role in its development. Oxidative stress functions as a primary development factor because it emerges when reactive oxygen species (ROS) amount exceeds antioxidant defenses thereby producing DNA and lipid and protein damage that drives tumor initiation and tumor growth. The variations in chemical structure between endogenous and dietary antioxidants (including vitamins C and E, polyphenols, carotenoids) make them eligible for cancer therapy supplementation because of their capability to alter redox-sensitive biochemical processes and activate apoptosis and angio-inhibition and minimize inflammatory responses. Multiple studies based on preclinical and clinical investigations conclude that antioxidant-rich dietary intake helps decrease cancer susceptibility alongside improving therapeutic responses. The use of antioxidants encounters difficulties related to dosage-dependent pro-oxidant effects and determination of best supplement timing and possible tumor cell protection mechanisms. This review discusses the actual mechanisms of antioxidant use in cancer therapy while reviewing appropriate therapeutic applications together with exploration of their limitations and directions for further research.
Keywords: Cancer, oxidative stress, Reactive oxygen species (ROS), antioxidants, Redox balance, Chemotherapy, Radiotherapy, Phytochemicals, Antioxidant-rich diet, Cancer prevention, Precision medicine.
References
- Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother. 2023;169:115891.
- Solomon DD, Sonia G, Kumar K, Kanwar K, Iyer S, Kumar M. Extensive Review on the Role of Machine Learning for Multifactorial Genetic Disorders Prediction. Arch Computat Methods Eng. 2024;31:623–40.
- Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451.
- Więckiewicz G, Weber S, Florczyk I, Gorczyca P. Socioeconomic burden of psychiatric cancer patients: A narrative review. Cancers. 2024;16(6):1108.
- Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1):22–8.
- Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 2021;787:108365.
- Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, et al. Oxidative stress in cancer cell metabolism. Antioxidants. 2021;10:642.
- Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal. 2024;22:7.
- Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, et al. Oxidative Stress in Cancer Cell Metabolism. Antioxidants. 2021;10:642.
- Eddaikra A, Eddaikra N. Endogenous enzymatic antioxidant defense and pathologies. Antioxidants-benefits, sources, mechanisms of action, IntechOpen; 2021.
- Engwa GA, Nweke FN, Nkeh-Chungag BN. Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med. 2022;28(1):114-28.
- Ayoka TO, Ezema BO, Eze CN, Nnadi CO. Antioxidants for the Prevention and Treatment of Non-communicable Diseases. J Explor Res Pharm. 2022;7(3):179–89.
- Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198.
- Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. Int J Mol Sci. 2024;25(6):3264.
- Agwu E, Ezihe C, Kaigama G. Antioxidant roles/functions of ascorbic acid (vitamin C). Ascorbic Acid-Biochemistry and Functions, IntechOpen; 2023.
- Kükürt A, Gelen V. Understanding vitamin C: Comprehensive examination of its biological significance and antioxidant properties. Ascorbic Acid-Biochemistry and Functions, IntechOpen;
- Parameswari R, Arokia Vijaya Anand M, Wang C -Z, Babaujanarthanam R, Nagarajan P. Vitamin E (Tocopherol): Implications in Cardiovascular Health and Neuroprotection. In: Tappia PS, Shah AK, Dhalla NS, editors. Lipophilic Vitamins in Health and Disease, vol. 28, Cham: Springer International Publishing; 2024, p. 233–57.
- Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process—Can α- Tocopherol Affect Them? Int J Mol Sci. 2023;24(15):12453.
- Akbari B, Baghaei‐Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant‐derived natural antioxidants in reduction of oxidative stress. Bio Factors. 2022;48(3):611–33.
- Li X, Wang Y, Li M, Wang H, Dong X. Metal complexes or chelators with ROS regulation capacity: Promising candidates for cancer treatment. Molecules. 2021;27(1):148.
- Kumar S, Saxena J, Srivastava VK, Kaushik S, Singh H, Abo-EL- Sooud K, et al. The interplay of oxidative stress and ROS scavenging: antioxidants as a therapeutic potential in sepsis. Vaccines. 2022;10:1575.
- Roychoudhury S, Sinha B, Choudhury BP, Jha NK, Palit P, Kundu S, et al. Scavenging properties of plant-derived natural biomolecule para-coumaric acid in the prevention of oxidative stress-induced diseases. Antioxidants. 2021;10(8):1205.
- Gulcin İ, Alwasel SH. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes. 2022;10(1):132.
- Timoshnikov VA, Selyutina OY, Polyakov NE, Didichenko V, Kontoghiorghes GJ. Mechanistic insights of chelator complexes with essential transition metals: antioxidant/pro-oxidant activity and applications in medicine. Int J Mol Sci. 2022;23(3):1247.
- Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13–33.
- Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Rad Biol Med. 2021;172:152–66.
- Lv Q, Long J, Gong Z, Nong K, Liang X, Qin T, et al. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat Product Communications. 2021;16:1934578X211027745.
- Radovanovic J, Banjac K, Obradovic M, Isenovic ER. Antioxidant enzymes and vascular diseases. Explor Med. 2021;2:544–55.
- Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez- Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci. 2024;25(5):2600.
- Poljsak B, Šuput D, Milisav I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid Med Cell Longev. 2013;2013:956792.
- Bouayed J, Bohn T. Exogenous antioxidants—Double-edged swords in cellular redox state. Oxid Med Cell Longev. 2010;3(4):228–37.
- Zhao H, Jin X. Causal associations between dietary antioxidant vitamin intake and lung cancer: A Mendelian randomization study. Front Nutr.. 2022;9:965911.
- Yang J, Qian S, Na X, Zhao A. Association between dietary and supplemental antioxidants intake and Lung Cancer Risk: Evidence from a cancer screening trial. Antioxidants. 2023;12(2):338.
- Merlin JPJ, Rupasinghe HPV, Dellaire G, Murphy K. Role of Dietary Antioxidants in p53‐Mediated Cancer Chemoprevention and Tumor Suppression. Oxid Med Cell Longev . 2021;2021:9924328.
- Fatima MT, Bhat AA, Nisar S, Fakhro KA, Akil ASA-S. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon. 2023;9(1):e12698.
- Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Function. 2023;14(17):7799–
- Didier AJ, Stiene J, Fang L, Watkins D, Dworkin LD, Creeden JF. Antioxidant and anti-tumor effects of dietary vitamins A, C, and E. Antioxidants. 2023;12(3):632.
- Zainal Z, Khaza’ai H, Radhakrishnan AK, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int. 2022;156:111175.
- Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci. 2025;26(3):1098.
- Xue P, Zhang G, Zhang J, Ren L. Synergism of ellagic acid in combination with radiotherapy and chemotherapy for cancer treatment. Phytomedicine. 2022;99:153998.
- Zehiroğlu C, Sarıkaya SBÖ. Determination of synergic antioxidant interactions of Ellagic acid and chemotherapy drug (Docetaxel and 54 Shinde et al / IP Archives of Cytology and Histopathology Research 2025;10(2):47-54 Mitoxantron) combinations. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2024;14:735–50.
- Boopathi E, Thangavel C. Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation. Int J Mol Sci. 2021;22(18):10126.
- Huot JR, Baumfalk D, Resendiz A, Bonetto A, Smuder AJ, Penna F. Targeting Mitochondria and Oxidative Stress in Cancer- and Chemotherapy-Induced Muscle Wasting. Antioxid Redox Signal. 2023;38(4-6):352–70.
- Yang Y, Sun W. Recent advances in redox-responsive nanoparticles for combined cancer therapy. Nanoscale Adv. 2022;4:3504–16.
- Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol. 2022;15:132.
- Zahra KF, Lefter R, Ali A, Abdellah E-C, Trus C, Ciobica A, et al. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid Med Cell Longev. 2021;2021:9965916.
- Yuan M, Zhang G, Bai W, Han X, Li C, Bian S. The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. Oxid Med Cell Longev. 2022;2022:1429869.
- Tretter V, Hochreiter B, Zach ML, Krenn K, Klein KU. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int J Mol Sci. 2022;23:106.
- Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, et al. Precision Redox: The Key for Antioxidant Pharmacology. Antioxidants & Redox Signaling. 2021;34:1069–82.
How to Cite This Article
Vancouver
Shinde G, Kadam S, Kale S, Upaganlawar A, Mahajan M, Upasani C. Balancing oxidative stress: Antioxidants as Allies and adversaries in cancer treatment [Internet]. IP Arch Cytol Histopathol Res. 2025 [cited 2025 Oct 02];10(2):47-54. Available from: https://doi.org/10.18231/j.achr.2025.014
APA
Shinde, G., Kadam, S., Kale, S., Upaganlawar, A., Mahajan, M., Upasani, C. (2025). Balancing oxidative stress: Antioxidants as Allies and adversaries in cancer treatment. IP Arch Cytol Histopathol Res, 10(2), 47-54. https://doi.org/10.18231/j.achr.2025.014
MLA
Shinde, Geeta, Kadam, Snehal, Kale, Shivani, Upaganlawar, Aman, Mahajan, Manojkumar, Upasani, Chanrashekhar. "Balancing oxidative stress: Antioxidants as Allies and adversaries in cancer treatment." IP Arch Cytol Histopathol Res, vol. 10, no. 2, 2025, pp. 47-54. https://doi.org/10.18231/j.achr.2025.014
Chicago
Shinde, G., Kadam, S., Kale, S., Upaganlawar, A., Mahajan, M., Upasani, C.. "Balancing oxidative stress: Antioxidants as Allies and adversaries in cancer treatment." IP Arch Cytol Histopathol Res 10, no. 2 (2025): 47-54. https://doi.org/10.18231/j.achr.2025.014